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Botnets: Mariposa 

¨  12 Million IPs 
¨  Data from 800k users 
¨  Changes malware every 48 hours 

How are they controlled? 

Map of Mariposa bots  



Botnet Command and Control 

¨  Current Channels for Command and Control 
¤  IRC 
¤ HTTP 
¤ E-Mail 
¤ Skype 
¤ Bluetooth 

¤ DNS? 

 



Our Contributions: DNS C&C 

¨  Formalize a DNS C&C protocol 
¤ Tunneling 
¤ Codewords 

¨  How does a hacker hide illegitimate traffic? 
¤ Piggybacking  
¤ Exponentially Distributed Query Strategy 

¨  Give a formal definition of perfect stealth in covert 
channels 

¨  Define a method to generate domain name flux 



DNS Communication 

¨  Tunneling 
¤ Upstream: Encode data as a query 
¤ Downstream: Encode response as answer 
¤ Bidirectional, but client must continually poll 
¤ Arbitrary messages 

¨  Codeword 
¤ Use common hostnames to signify particular command 
¤ Uni-directional 



Blackhat’s Setup 

¨  Create a malicious nameserver for badguy.com 
(Codeword or Tunneling) 

Or  
¨  Be able to seed a known DNS entry with information 

(Codeword Only) 

What info is associated with 
[Base32 encoding string].badguy.com 

CNAME/TXT [Base32 encoded string] 
NameServer for 
badguy.com Bot 



Codewords 

¨  Look up www.subdomain.domain.com 
¤  If address resolves to 127.0.0.1: Do Nothing 
¤ Else attack address 

¨  Look up ftp.subdomain.domain.com 
¤  If address resolves to 127.0.0.1: Do Nothing 
¤ Else report status to port 2314 and download updates 

 

Both methods allow communication between bot and 
controller 



How do we detect codewords if they look like normal  
domain names? 



Temporal Detection 

¨  Random processes do not show uniform intervals 

¨  Poisson Process: For given interval of time the 
probability of an event occurring is fixed. 

10s 15s 25s 7s 8s 1s 1s 1s 1s 



WWBHD? 

¨  We propose to model a normal rate and try to 
replicate it or hide behind it 
¤ Examples Include: 
¤ CNN.com λ=39/hour / 50 hosts 
¤ Google.com λ=131.5/hour / 50 hostss 

¨  We present the Piggyback query strategy: 
1.  Wait for a valid DNS request 
2.  Attach a message as part of a legitimate request or 

send alongside a legitimate request 



Experiments 

¨  We evaluate quantitative techniques for 
distinguishing stealthy C&C traffic from legitimate 
DNS traffic 

¤ Packet contents, the contents of each packet are 
different if they are encoded data vs. valid domain 

¤ Timing, extra packets change the intervals between 
packets 



Measurements 

¨  Entropy 

¨  Jensen-Shannon Divergence 
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Fig. 6. KS test results between queries with the arrival rate of � = 39 queries/hour
and bot-mixed queries with � + �b (X-axis). Four runs of simulation lasting for 10, 24,
48, and 100 hours are shown.

4.2 A Countermeasure Based on Deep Packet Inspection
We describe and evaluate a concrete countermeasure against stealthy
DNS channels through statistically analyzing tra⇤c content. To compute
the byte distribution in normal and tunneling traces, we use the Jensen-
Shannon (JS) Divergence DJS , which is a common metric for quantifying
the di�erence between two probability distributions P and Q, and is a
commutative version of Kullback-Leibler divergence of Q from P . A lower
DJS value means a higher similarity in two probability distributions.
The JS Divergence is particularly suited in situations where the random
variable is discretized. It is computed as follows.

M =
1
2
(P + Q) (2)

DKL(P, Q) =
nX

i=0

pi log
pi

qi
(3)

DJS =
1
2
(DKL(P, M) + DKL(Q, M)) (4)

We experimentally compare DNS packet traces recorded on a host, specif-
ically, on how di�erent tunneling packets are from legitimate ones in
terms of the probability distribution of content, assuming that content
is not encrypted.
Such probability measures may be taken on a per-host or per subnet
basis, however since a filter based on these methods must only keep an
probability distribution of the bytes in a packet, no identifying infor-
mation can be inferred. In this way privacy concerns can be kept at a
minimum.
In the following tests, three normal DNS traces were recorded and one
tunneling DNS trace via tunneled mode was recorded. Each trace corre-
sponds to an hour-long network activities on a host. Sizes of our traces

Entropy = pi log2 pi
i=1

k

∑



Packet Measurements 
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Differences can be measured between infested(red) data when the data 
 contains >40% tunneled data  



Time To Communicate 

¨  Time-to-communicate (TTC) is defined as the time 
interval between two network connections (DNS 
queries in our setting) 

¨  A bot master sets the Minimum TTC (MTTC) this 
affects the bot’s Actual TTC (ATTC) 

Ø  Smaller TTC means more frequent communication 



Piggyback in the Real World 
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MTTC ~ ATTC for the most active users, and degrades as a 
function of usage frequency. 



Piggyback in the Real World 
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Piggyback in the Real World 
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A MTTC of 5 hours will results with a mean host ATTC of 24 hours 



Exponential Query: CNN 
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Longer recording times allow detection at lower rates 



Exponential Query: Google (high rate) 
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Higher legitimate traffic makes detection more difficult 



Domain Flux 

¨  Bots and Controllers prevent blocking by generating 
short-lived domains 

¨  Simple Method:  
¨  Example: 

¨  But these do not look like real domains 

H (secret || counter)

H (ACNS 2011||1234) = d41d8cd98f00b20.com



Mahalanobis Distance 
Hashed Domains vs. Top 1M Most Popular Domains from Alexa 

Hashed domains, generate a larger Mahalanobis distance 

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

Fu
ll 

M
ah

al
an

ob
is

 D
is

ta
nc

e 
to

 T
op

 1
M

 D
om

ai
ns

Domain Index

Hashed Data
Valid Domains



Related Works 

¨  Karasaridis et al proposed the use of Kullback-
Leibler distance to measure byte distribution of DNS 
packets 

¨  R. Villamarin-Salomon and J. C. Brustoloni used 
DNS-based anomaly detection to detect botnets 

¨  Stone-Gross et al observed domain flux in Torpig 



Conclusions and Countermeasures 

¨  Because almost all computers need domain-name 
resolution, it is impossible to block DNS traffic. 

¨  For tunneled communications, probability 
distributions can be monitored to determine 
anomalies 

¨  For codeword communications, monitor rate of 
communication for anomalies. 

Take Home Message: 
We demonstrate feasibility, effective, hard to detect. 
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